Multiplicative Jordan derivations on triangular n-matrix rings

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Jordan left derivations in full and upper triangular matrix rings

In this paper, left derivations and Jordan left derivations in full and upper triangular matrix rings over unital associative rings are characterized.

متن کامل

On Jordan left derivations and generalized Jordan left derivations of matrix rings

Abstract. Let R be a 2-torsion free ring with identity. In this paper, first we prove that any Jordan left derivation (hence, any left derivation) on the full matrix ringMn(R) (n 2) is identically zero, and any generalized left derivation on this ring is a right centralizer. Next, we show that if R is also a prime ring and n 1, then any Jordan left derivation on the ring Tn(R) of all n×n uppe...

متن کامل

Jordan automorphisms, Jordan derivations of generalized triangular matrix algebra

Derivations, Jordan derivations, as well as automorphisms and Jordan automorphisms of the algebra of triangular matrices and some class of their subalgebras have been the object of active research for a long time [1, 2, 5, 6, 9, 10]. A well-know result of Herstein [11] states that every Jordan isomorphism on a prime ring of characteristic different from 2 is either an isomorphism or an anti-iso...

متن کامل

Characterizations of Jordan derivations on triangular rings: Additive maps Jordan derivable at idempotents

Let T be a triangular ring. An additive map δ from T into itself is said to be Jordan derivable at an element Z ∈ T if δ(A)B +Aδ(B) + δ(B)A+Bδ(A) = δ(AB+BA) for any A,B ∈ T with AB + BA = Z. An element Z ∈ T is called a Jordan all-derivable point of T if every additive map Jordan derivable at Z is a Jordan derivation. In this paper, we show that some idempotents in T are Jordan all-derivable po...

متن کامل

on jordan left derivations and generalized jordan left derivations of matrix rings

abstract. let r be a 2-torsion free ring with identity. in this paper, first we prove that any jordan left derivation (hence, any left derivation) on the full matrix ringmn(r) (n  2) is identically zero, and any generalized left derivation on this ring is a right centralizer. next, we show that if r is also a prime ring and n  1, then any jordan left derivation on the ring tn(r) of all n×n up...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ScienceAsia

سال: 2020

ISSN: 1513-1874

DOI: 10.2306/scienceasia1513-1874.2020.088